Highlighted Research by Our Members
Benjamin Wright, Lee Sharkey
Sparse autoencoders are a method of resolving superposition by recovering linearly encoded “features” inside activations. Unfortunately, despite the great recent success of SAEs at extracting human interpretable features, they fail to perfectly reconstruct the activations. For instance, Cunningham et al. (2023) note that replacing the residual stream of layer 2 of Pythia-70m with the reconstructed output of an SAE increased the perplexity of the model on the Pile from 25 to 40. It is important for interpretability that the features we extract accurately represent what the model is doing…
Tony T. Wang, Miles Wang, Kaivalya Hariharan, Nir Shavit
LLMs often face competing pressures (for example helpfulness vs. harmlessness). To understand how models resolve such conflicts, we study Llama-2-chat models on the forbidden fact task. Specifically, we instruct Llama-2 to truthfully complete a factual recall statement while forbidding it from saying the correct answer. This often makes the model give incorrect answers. We decompose Llama-2 into 1000+ components, and rank each one with respect to how useful it is for forbidding the correct answer. We find that in aggregate, around 35 components are enough to reliably implement the full suppression behavior. However, these components are fairly heterogeneous and many operate using faulty heuristics…
Recent research by student groups we support
The AI Safety Student Team is a Harvard-based student group supported by CBAI. See more research by AISST members here.
Barath Harithas
Export control evasion of controlled chips is a known concern, but the specifics of this activity are opaque. In addition, a systematic analysis of the entire chip smuggling pipeline, from initial procurement to unlawful distribution, remains conspicuously absent. This study aims to bridge that methodological gap. It dissects the smuggling pipeline into four distinct stages—(1) initial procurement, (2) evasion of customs controls, (3) port exit, and (4) transshipment—and identifies 11 potential smuggling tactics.
Gustaf Ahdritz, Tian Qin, Nikhil Vyas, Boaz Barak, Benjamin L. Edelman
We study the feasibility of identifying epistemic uncertainty (reflecting a lack of knowledge), as opposed to aleatoric uncertainty (reflecting entropy in the underlying distribution), in the outputs of large language models (LLMs) over free-form text. In the absence of ground-truth probabilities, we explore a setting where, in order to (approximately) disentangle a given LLM's uncertainty, a significantly larger model stands in as a proxy for the ground truth. We show that small linear probes trained on the embeddings of frozen, pretrained models accurately predict when larger models will be more confident at the token level and that probes trained on one text domain generalize to others. Going further, we propose a fully unsupervised method that achieves non-trivial accuracy on the same task. Taken together, we interpret these results as evidence that LLMs naturally contain internal representations of different types of uncertainty that could potentially be leveraged to devise more informative indicators of model confidence in diverse practical settings.
MIT AI Alignment is an MIT-based student group supported by CBAI. See their site here.
Stephen Casper, Lennart Schulze, Oam Patel, Dylan Hadfield-Menell
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without generating inputs that elicit them. LAT leverages the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction…
Samyak Jain, Robert Kirk, Ekdeep Singh Lubana, Robert P. Dick, Hidenori Tanaka, Edward Grefenstette, Tim Rocktäschel, David Scott Krueger
Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining: does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that: (i) fine-tuning rarely alters the underlying model capabilities…
AISST & MAIA authors: Ben Edelmen, Stephen Casper, Ekdeep Singh, Eric Bigelow
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are organized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose 200+, concrete research questions.
Independent Research supported by CBAI
Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, Aaron Mueller
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.